

NEXCOM International Co., Ltd.

Mobile Computing Solutions Vehicle Telematics Computer VTC 1010

User Manual

CONTENTS

Pretace	
Copyright	\
Disclaimer	٠١
Acknowledgements	٠١
Regulatory Compliance Statements	٠١
Declaration of Conformity	٠١
RoHS Compliance	V
Warranty and RMA	
Technical Support and Assistance	
Conventions Used in this Manual)
Global Service Contact Information	
Package Contents	xii
Chanter 1. Product Introduction	
Chapter 1: Product Introduction	
Physical Features	
Front View	
Rear View	
Overview	
Key Features	
Hardware Specifications	
Connector Numbering	
Chapter 2: External Connectors Pinout	Description
LED Indicators (PWR, Status, LAN & GPIO)	-
LED Indicators (SVNR, Status, LAN & GPIO)	

USB 3.0 Port	7
Audio Jack 3.5mm	7
SD Card Connector	8
SIM1 Socket	
SIM2 Socket	
Event Button	
Reset Button	10
Power Input	
Multiport Connector	
VGA Connector	
RS232 Connector	12
Line-out	13
Mic-in	13
DisplayPort	
USB 2.0 Port	
LAN Connector	15
Chapter 3: Jumpers and Switches	
Before You Begin	16
Precautions	
Jumper Settings	
VTC 1010 Jumper and Switch Settings	
CMOS Clear Switch	
Voltage Selector (For CN10 Connector)	
WWAN Module Selector (For Wake-Up & Voice on CN10)	
RTC Battery Connector	
,	

ii

External Thermal Sensor Module	21	Installing the Second WWAN Module	40
Debug 80 Port Connector	21	Installing a Wireless LAN Module	42
VGA Connector	22	Installing a SATA SSD Drive	44
COM Port Connector	22	Installing a SO-DIMM	45
High Speed UART Connector	23	Installing a Capture Card	45
OBDII Module Connector	23		
Capture Card Connector	24	Appendix A: Software Demo Utility fo	r I/O Ports of
Capture Card Connector	24	Function Control	
5V Output	25	Menu Screen	16
Event Button Connector	25	1.1 Status	
SATA HDD Connector	26	1.2 GPIO Setting	
MCU Debug Port	26	1.3 MCU GPIO Setting	
GAL Download Port	27		
MCU Download Port	27	1.4 WDT Setting	
GPIO Setting	28	1.5 3G Module 1.6 RS-422/RS-485	
Voltage Setup Selection	28	1.7 Power On Delay Time	
FAN Connector	29	•	
VIOB-GPS-DR01	29	1.8 Power Off Delay Time	
GPS Module Connector	30	1.9 Wake Up Function	
MCU GPIO Connector	30		
PCIe Connector	31	2.1 CAN Bus Setting	52
Expand Connector	31	Annondiy P. CDS Footure	
Mini-PCle (USB + PCle)		Appendix B: GPS Feature	
Mini-PCle (mSATA or PCle [default])	33	uBlox-NEO M8 Overview	
Mini-PCle (USB + PCle)	34	Technical Specifications	53
Mini-PCle (USB)	35		
		Appendix C: Pin Definition for the Mul	itiport Cable
Chapter 4: Mechanical Dimensions		P1 Connector Pinout	56
•		P2 to P17 Connector Pinouts	56
Chapter 5: System Setup		Power Output Connector	56
	27	RS232 Connector	56
Removing the Chassis Cover		GPIO + CAN Bus 2.0B Connector	57
Installing the First WWAN Module	38	ORDII Connector	57

	58
RS422/485 Connector	58
Reset Button	59
Odometer Connector	59
AV1 Jack	60
AV2 Jack	60
AV3 Jack	61
A/V4 Jack	61
Front Audio	62
Center Audio	62
Surround Audio	63
Rear Audio	63
Appendix D: Signal Connection of DI/DO)
GPIO Pinout Description	64
	64 64
GPIO Pinout Description	64 64 65
GPIO Pinout Description SW1 Setting Digital Input	64 64 65
GPIO Pinout Description SW1 Setting Digital Input	64 65 66
GPIO Pinout Description	64 65 66 t Setup
GPIO Pinout Description	64 65 66 t Setup
GPIO Pinout Description SW1 Setting Digital Input Digital Output Appendix E: Vehicle Power Management External Power Output Setting Startup and Shutdown Voltage Setting	64 65 66 t Setup 67
GPIO Pinout Description	

NE(COM

Appendix F: Power Consumption

PREFACE

Copyright

This publication, including all photographs, illustrations and software, is protected under international copyright laws, with all rights reserved. No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written consent from NEXCOM International Co., Ltd.

Disclaimer

The information in this document is subject to change without prior notice and does not represent commitment from NEXCOM International Co., Ltd. However, users may update their knowledge of any product in use by constantly checking its manual posted on our website: http://www.nexcom.com. NEXCOM shall not be liable for direct, indirect, special, incidental, or consequential damages arising out of the use of any product, nor for any infringements upon the rights of third parties, which may result from such use. Any implied warranties of merchantability or fitness for any particular purpose is also disclaimed

Acknowledgements

VTC 1010 is a trademark of NEXCOM International Co., Ltd. All other product names mentioned herein are registered trademarks of their respective owners.

Regulatory Compliance Statements

This section provides the FCC compliance statement for Class B devices and describes how to keep the system CE compliant.

Declaration of Conformity

FCC

This equipment has been tested and verified to comply with the limits for a Class B digital device, pursuant to Part 15 of FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. Operation of this equipment in a residential area (domestic environment) is likely to cause harmful interference, in which case the user will be required to correct the interference (take adequate measures) at their own expense.

CE

The product(s) described in this manual complies with all applicable European Union (CE) directives if it has a CE marking. For computer systems to remain CE compliant, only CE-compliant parts may be used. Maintaining CE compliance also requires proper cable and cabling techniques.

e13 Mark

The "e" mark is the proof of compliance with directives (laws) required by the European Union. The Council of European communities in Brussels issues these directives and all members must accept approved products. e13 - Luxembourg

For more information, visit http://www.tuv.com/jp/en/_e_mark_and_e_mark_homologation_for_vehicles_vehicle_components_.html.

RoHS Compliance

NEXCOM RoHS Environmental Policy and Status Update

NEXCOM is a global citizen for building the digital infrastructure. We are committed to providing green products and services, which are compliant with

European Union RoHS (Restriction on Use of Hazardous Substance in Electronic Equipment) directive 2011/65/EU, to be your trusted green partner and to protect our environment.

RoHS restricts the use of Lead (Pb) < 0.1% or 1,000ppm, Mercury (Hg) < 0.1% or 1,000ppm, Cadmium (Cd) < 0.01% or 100ppm, Hexavalent Chromium (Cr6+) < 0.1% or 1,000ppm, Polybrominated biphenyls (PBB) < 0.1% or 1,000ppm, and Polybrominated diphenyl Ethers (PBDE) < 0.1% or 1,000ppm.

In order to meet the RoHS compliant directives, NEXCOM has established an engineering and manufacturing task force in to implement the introduction of green products. The task force will ensure that we follow the standard NEXCOM development procedure and that all the new RoHS components and new manufacturing processes maintain the highest industry quality levels for which NEXCOM are renowned

How to recognize NEXCOM RoHS Products?

For existing products where there are non-RoHS and RoHS versions, the suffix "(LF)" will be added to the compliant product name.

All new product models launched after January 2013 will be RoHS compliant. They will use the usual NEXCOM naming convention.

Warranty and RMA

NEXCOM Warranty Period

NEXCOM manufactures products that are new or equivalent to new in accordance with industry standard. NEXCOM warrants that products will be free from defect in material and workmanship for 2 years, beginning on the date of invoice by NEXCOM. HCP series products (Blade Server) which are manufactured by NEXCOM are covered by a three year warranty period.

NEXCOM Return Merchandise Authorization (RMA)

- Customers shall enclose the "NEXCOM RMA Service Form" with the returned packages.
- Customers must collect all the information about the problems encountered and note anything abnormal or, print out any on-screen messages, and describe the problems on the "NEXCOM RMA Service Form" for the RMA number apply process.
- Customers can send back the faulty products with or without accessories (manuals, cable, etc.) and any components from the card, such as CPU and RAM. If the components were suspected as part of the problems, please note clearly which components are included. Otherwise, NEXCOM is not responsible for the devices/parts.
- Customers are responsible for the safe packaging of defective products, making sure it is durable enough to be resistant against further damage and deterioration during transportation. In case of damages occurred during transportation, the repair is treated as "Out of Warranty."
- Any products returned by NEXCOM to other locations besides the customers' site will bear an extra charge and will be billed to the customer.

Repair Service Charges for Out-of-Warranty Products

NEXCOM will charge for out-of-warranty products in two categories, one is basic diagnostic fee and another is component (product) fee.

System Level

- Component fee: NEXCOM will only charge for main components such as SMD chip, BGA chip, etc. Passive components will be repaired for free, ex: resistor, capacitor.
- Items will be replaced with NEXCOM products if the original one cannot be repaired. Ex: motherboard, power supply, etc.
- Replace with 3rd party products if needed.
- If RMA goods can not be repaired, NEXCOM will return it to the customer without any charge.

Board Level

- Component fee: NEXCOM will only charge for main components, such as SMD chip, BGA chip, etc. Passive components will be repaired for free, ex: resistors, capacitors.
- If RMA goods can not be repaired, NEXCOM will return it to the customer without any charge.

Warnings

Read and adhere to all warnings, cautions, and notices in this guide and the documentation supplied with the chassis, power supply, and accessory modules. If the instructions for the chassis and power supply are inconsistent with these instructions or the instructions for accessory modules, contact the supplier to find out how you can ensure that your computer meets safety and regulatory requirements.

Cautions

Electrostatic discharge (ESD) can damage system components. Do the described procedures only at an ESD workstation. If no such station is available, you can provide some ESD protection by wearing an antistatic wrist strap and attaching it to a metal part of the computer chassis.

Safety Information

Before installing and using the device, note the following precautions:

- Read all instructions carefully.
- Do not place the unit on an unstable surface, cart, or stand.
- Follow all warnings and cautions in this manual.
- When replacing parts, ensure that your service technician uses parts specified by the manufacturer.
- Avoid using the system near water, in direct sunlight, or near a heating device.
- The load of the system unit does not solely rely for support from the rackmounts located on the sides. Firm support from the bottom is highly necessary in order to provide balance stability.
- The computer is provided with a battery-powered real-time clock circuit. There is a danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Discard used batteries according to the manufacturer's instructions.

Installation Recommendations

Ensure you have a stable, clean working environment. Dust and dirt can get into components and cause a malfunction. Use containers to keep small components separated.

Adequate lighting and proper tools can prevent you from accidentally damaging the internal components. Most of the procedures that follow require only a few simple tools, including the following:

- A Philips screwdriver
- A flat-tipped screwdriver
- A grounding strap
- An anti-static pad

Using your fingers can disconnect most of the connections. It is recommended that you do not use needlenose pliers to disconnect connections as these can damage the soft metal or plastic parts of the connectors.

Warning!

viii

- 1. Handling the unit: carry the unit with both hands and handle it with care.
- 2. Maintenance: to keep the unit clean, use only approved cleaning products or clean with a dry cloth.
- 3. CompactFlash: Turn off the unit's power before inserting or removing a CompactFlash storage card.
- 4. SIM: Do not insert or remove the SIM card when the **system** is **powered** on. Always **power** off the **system** before inserting or removing the SIM card.

Safety Precautions

- Read these safety instructions carefully.
- Keep this User Manual for later reference.
- Disconnect this equipment from any AC outlet before cleaning. Use a damp cloth. Do not use liquid or spray detergents for cleaning.
- For plug-in equipment, the power outlet socket must be located near the equipment and must be easily accessible.
- Keep this equipment away from humidity.
- Put this equipment on a stable surface during installation. Dropping it or letting it fall may cause damage.
- Do not leave this equipment in either an unconditioned environment or in a above 40°C storage temperature as this may damage the equipment.
- The openings on the enclosure are for air convection to protect the equipment from overheating. DO NOT COVER THE OPENINGS.
- Make sure the voltage of the power source is correct before connecting the equipment to the power outlet.
- Place the power cord in a way so that people will not step on it. Do not
 place anything on top of the power cord. Use a power cord that has been
 approved for use with the product and that it matches the voltage and
 current marked on the product's electrical range label. The voltage and
 current rating of the cord must be greater than the voltage and current
 rating marked on the product.
- All cautions and warnings on the equipment should be noted.

- If the equipment is not used for a long time, disconnect it from the power source to avoid damage by transient overvoltage.
- Never pour any liquid into an opening. This may cause fire or electrical shock
- Never open the equipment. For safety reasons, the equipment should be opened only by qualified service personnel.
- If one of the following situations arises, get the equipment checked by service personnel:
 - a. The power cord or plug is damaged.
 - b. Liquid has penetrated into the equipment.
 - c. The equipment has been exposed to moisture.
 - d. The equipment does not work well, or you cannot get it to work according to the user's manual.
 - e. The equipment has been dropped and damaged.
 - f. The equipment has obvious signs of breakage.
- Do not place heavy objects on the equipment.
- The unit uses a three-wire ground cable which is equipped with a third pin to ground the unit and prevent electric shock. Do not defeat the purpose of this pin. If your outlet does not support this kind of plug, contact your electrician to replace your obsolete outlet.
- CAUTION: DANGER OF EXPLOSION IF BATTERY IS INCORRECTLY REPLACED. REPLACE ONLY WITH THE SAME OR EQUIVALENT TYPE RECOMMENDED BY THE MANUFACTURER. DISCARD USED BATTERIES ACCORDING TO THE MANUFACTURER'S INSTRUCTIONS.
- The computer is provided with CD drives that comply with the appropriate safety standards including IEC 60825.

ix

Technical Support and Assistance

- For the most updated information of NEXCOM products, visit NEXCOM's website at www.nexcom.com.
- 2. For technical issues that require contacting our technical support team or sales representative, please have the following information ready before calling:
 - Product name and serial number
 - Detailed information of the peripheral devices
 - Detailed information of the installed software (operating system, version, application software, etc.)
 - A complete description of the problem
 - The exact wordings of the error messages

Conventions Used in this Manual

Warning:

Information about certain situations, which if not observed, can cause personal injury. This will prevent injury to yourself when performing a task.

Caution:

Information to avoid damaging components or losing data.

Note:

Provides additional information to complete a task easily.

NE:COM

Global Service Contact Information

Headquarters NEXCOM International Co., Ltd.

9F. No. 920. Zhonazhena Rd.. Zhonghe District, New Taipei City, 23586, Taiwan, R.O.C.

Tel: +886-2-8226-7786 Fax: +886-2-8226-7782 www.nexcom.com

Asia

Taiwan NexAloT Headquarters Industry 4.0 and Cloud Services

13F, No.922, Zhongzheng Rd., Zhonghe District, New Taipei City, 23586. Taiwan. R.O.C. Tel: +886-2-8226-7796

Fax: +886-2-8226-7926

Email: jacobhuang@nexaiot.com

www.nexaiot.com

NexAloT Co., Ltd. Taichung Office

16F, No.250, Sec.2, Chongde Rd., Beitun District,

Taichung City, 406, Taiwan, R.O.C.

Tel: +886-4-2249-1179 Fax: +886-4-2249-1172

Email: jacobhuang@nexaiot.com

www.nexaiot.com

NexCOBOT Taiwan Co., Ltd.

13F, No.916, Zhongzheng Rd., Zhonahe District. New Taipei City, 23586, Taiwan, R.O.C.

Tel: +886-2-8226-7786 Fax: +886-2-8226-7926

Email: iennvshern@nexcobot.com

www.nexcobot.com

GreenBase Technology Corp.

13F, No.922, Zhongzheng Rd., Zhonahe District. New Taipei City, 23586, Taiwan, R.O.C.

Tel: +886-2-8226-7786 Fax: +886-2-8226-7900

Fmail: vivianlin@nexcom com tw

www.nexcom.com.tw

DivioTec Inc.

19F-1A. No.97. Sec.4. ChonaXin Rd.. Sanchong District, New Taipei City, 24161, Taiwan, R.O.C. Tel: +886-2-8976-3077

Fmail: sales@diviotec.com www.diviotec.com

AloT Cloud Corp.

13F, No.922, Zhongzheng Rd., Zhonahe District.

New Taipei City, 23586, Taiwan, R.O.C.

Tel: +886-2-8226-7786 Fax: +886-2-8226-7782 Fmail: alantsai@aiotcloud net www.aiotcloud.dev

EMBUX TECHNOLOGY CO., LTD.

13F, No.916, Zhongzheng Rd., Zhonghe District,

New Taipei City, 23586, Taiwan, R.O.C.

Tel: +886-2-8226-7786 Fax: +886-2-8226-7782 Email: info@embux.com www.embux.com

TMR TECHNOLOGIES CO., LTD.

13F, No.916, Zhongzheng Rd., Zhonghe District,

New Taipei City, 23586, Taiwan, R.O.C.

Tel: +886-2-8226-7786 Fax: +886-2-8226-7782 Fmail: services@tmrtek.com

www.tmrtek.com

China NEXSEC Incorporated

201, Floor 2, Unit 2, Building 15, Yard 3, Gaolizhang Road, Haidian District, Beijing, 100094, China

Tel: +86-10-5704-2680 Fax: +86-10-5704-2681 Email: marketing@nexsec.cn

www.nexsec.cn

NEXCOM Shanghai

Room 406-407, Building C, No 154, Lane 953, Jianchuan Road, Minhang District, Shanghai, 201108, China

Tel: +86-21-5278-5868 Fax: +86-21-3251-6358 Email: sales@nexcom.cn

www.nexcom.cn

NEXCOM Surveillance Technology Corp.

Floor 8, Building B3, Xiufeng Industrial Zone, GanKeng Community, Buji Street, LongGang District,

ShenZhen, 518112, China Tel: +86-755-8364-7768 Fax: +86-755-8364-7738

Email: steveyang@nexcom.com.tw

www.nexcom.cn

NEXGOL Chongqing

1st Building No.999, Star Boulevard, Yongchuan Dist, Chongqing City, 402160, China

Tel: +86-23-4960-9080 Fax: +86-23-4966-5855 Email: sales@nexgol.com.cn

www.nexcom.cn

Beijing NexGemo Technology Co.,Ltd.

Room 205, No.1, Fazhan Rd., Beijing International Information Industry Base, Changping District, Beijing, 102206, China Tel: +86-10-8072-2025

Fax: +86-10-8072-2022 Email: sales@nexgemo.cn www.nexgemo.com

Japan NEXCOM Japan

9F, Tamachi Hara Bldg., 4-11-5, Shiba Minato-ku, Tokyo, 108-0014, Japan Tel: +81-3-5419-7830

Fax: +81-3-5419-7832 Email: sales@nexcom-jp.com

www.nexcom-jp.com

America USA NEXCOM USA

46665 Fremont Blvd., Fremont CA 94538, USA Tel: +1-510-656-2248

Fax: +1-510-656-2158 Email: sales@nexcom.com www.nexcomusa.com

Europe United Kingdom NEXCOM EUROPE

10 Vincent Avenue, Crownhill Business Centre, Milton Keynes, Buckinghamshire MK8 0AB, United Kingdom Tel: +44-1908-267121 Fax: +44-1908-262042

www.nexcom.com

Fmail: sales uk@nexcom eu

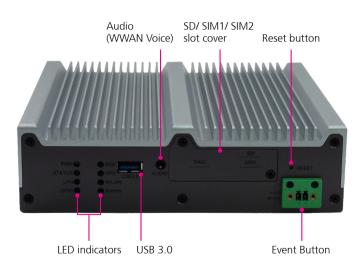
Package Contents

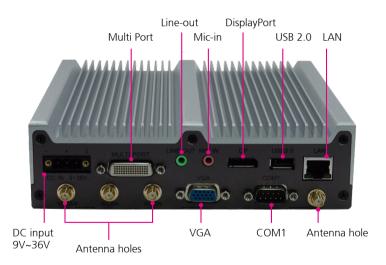
Before continuing, verify that the VTC 1010 series package that you received is complete. Your VTC 1010 series package should have all the items listed in the following table.

Item	P/N	Name	Specification	Qty
1	4NCPM00302X00	(T)Terminal Blocks 3P Phoenix Contact:1777992	5.08mm Male DIP Green	1
2	50311F0100X00	(H)Round Head Screw w/Spring+Flat Washer Long FEI:P3x6L	P3x6 iso/SW6x0.5 NI	4
3	50311F0110X00	(H)Flat Head Screw Long FEI:F3x5ISO+NYLOK NIGP	F3x5 NI NYLOK	4
4	5040420015X00	VTC 1010 HDD Bracket VER:A PANADVANCE	95.35x112x12 SPCC NI PAINTING	1
5	60233AT134X00	SATA Cable ST:MD-6102069	SATA7P/L 180D TO 90D L=75mm	1
6	60233PW197X00	SATA Power Cable Best:900-0415-070R	Female Connector 15P to Housing 4P PIT:2.54mm L:70mm	1
7	602DCD0769X00	(N)VTC 1010 CD Driver VER:1.0	JCL	1
8	6030000039X00	Composite Cable for VTC 1010 ST:13-210-E012	DMS 60PIN L=300mm	1
9	603VED0001X00	Capture Card Cable for MPX-885 ST:VT-1009F2 27-54	IDC10P PH:1.24x2.54 TI PH:1.27x1.27 L=90mm	1

Ordering Information

The following provides ordering information for VTC 1010.


• VTC 1010-BK (P/N: 10V00101000X0)
Intel® Atom™ processor E3827 1.75GHz CPU, 2GB DDR3L SO-DIMM,
VGA/DP Output, 1x LAN, 2x RS-232, 1x RS-422/485, 3x DI, 3x DO, 3x
USB, 12VDC output


CHAPTER 1: PRODUCT INTRODUCTION

Physical Features

Front View

Rear View

Overview

VTC 1010 features next generation Intel® Atom™ processor E3827, 1.75GHz, with powerful graphic and multimedia enhancement. VTC 1010 is packed rugged, fanless, and 1 DIN compact enclosure. It is specifically designed to comply with stringent MIL-STD-810G military standard. VTC 1010 comes with built-in CAN BUS 2.0B interface and optional OBDII (ASE J1939/ J1708) port to monitor the vehicle operating status real-time and troubleshoot a non-working vehicle. With dual SIM card design, it allows the choice of the best service carrier network and minimizes roaming cost. VTC 1010 can be configured to work with two independent WWAN connections and can effectively increase the bandwidth for faster massive data transfer over the air. VTC 1010 also supports two-way voice communication. Equipped with intelligent vehicle power management, VTC 1010 can be waked up by ignition, timer, or remote dial-up for flexible operation or maintenance. VTC 1010 can satisfy different demands for versatile telematics applications, such as infotainment, fleet management, dispatching system and mobile video surveillance

Key Features

- Intel® Atom™ processor E3827, 1.75GHz
- Dual SIM cards + dual WWAN modules support
- Built-in U-blox M8N GPS, optional Dead Reckoning support
- Built-in CAN 2.0B. Optional CAN/OBDII Combo Module (SAE J1939/ CAN2.0B by DIP Switch)
- 4x Mini-PCle expansions
- Wake on RTC/SMS via WWAN module
- Compliant with MIL-STD-810G
- Built-in G-sensor

Hardware Specifications

CPU

Intel® Atom™ processor E3827, dual core 1.75GHz

Memory

 1x 204-pin DDR3L SO-DIMM socket support 1066MHz / 1333MHz up to 8GB. Default 2GB

Storage

- 1x 2.5" SATA 2.0
- 1x SD card socket

Expansion

- 1x full size Mini-PCle socket (USB 2.0)
- 1x full size Mini-PCle socket (USB 2.0 + PCle)
- 1x full size Mini-PCle socket (SATA or (USB 2.0 + PCle))
- 1x half size Mini-PCle socket (USB 2.0 + PCle)

Function

- 1x default U-blox M8N GPS module (72-channel, GPS, GLONASS, BeiDou, SBAS) or optional modules with Dead Reckoning support
- Built-in G-sensor

I/O Interface-Front

- 8x LED for power, system status, storage, WWAN, WLAN, GPS, LAN, GPIO
- 2x external accessible SIM card socket (selectable) with cover
- 1x audio jack 3.5mm for WWAN voice communication, including 1x Mic-in and 1x Line-out
- 1x external accessible SD card socket with cover
- 1x event button (trigger type)
- 1x reset button
- 1x type A USB 3.0 compliant host, supporting system boot up.

I/O Interface-Rear

- 1x 9~36VDC input with ignition and 11W typical power consumption
- 1x type A USB 2.0 compliant host, supporting system boot up
- 1x RJ45 10/100/1000 Fast Ethernet with LED
- 1x phone jack 3.5mm for Mic-in (for WWAN voice communication)
- 1x phone jack 3.5mm for Line-out (for PC audio)
- 1x DB-15 VGA. Resolution up to 2500 x 1600 @60Hz
- 1x DP port. Resolution up to 2500 x 1600 @60Hz
- 1x DB-9 for RS-232
- 4x antenna hole for GPS/ WWAN/ WLAN/ BT
- 1x LHF 60-pin connector
 - 1x 6-pin power connector, 12VDC output (max: 1A)
 - 1x type A female USB 2.0 compliant host, supporting system boot up.
 - 1x DB-9 RS-232
 - 1x DB-9 RS-422/ 485
 - 1x DB-9 female 3x DI and 3x DO. Onboard CAN 2.0B signals
 - (Programmable Digital Input)
 - Input Voltage (Internal Type): 5VDC TTL (default)
 - Input Voltage (Source Type): 3~12VDC
 - (Programmable Digital Output)
 - Digital Output (Sink Type): 5VDC TTL (default), max current: 20mA Digital Output (Source Type): 3~18VDC, max current: 150mA
 - 1x DB-9 for optional ODBII module (ASE J1939 or J1708)
 - 1x DB-9 for optional GPS Dead Reckoning module
 - 4x BNC connector video-in for optional 4-channel video capture card
 - 4x audio connector for 7.1 channel audio output
 - (front, center/ woofer, rear surround, side surround)

Power Management

 Selectable boot-up & shut-down voltage for low power protection by software

- Setting 8-level power on/off delay time by software
- Status of ignition and low voltage can be detected by software
- Support S3/ S4 suspend mode

Operating System

- Windows 8 Professional, WES8
- Windows 7, WES7
- Tizen IVI
- Fedora

Dimensions

- 180 mm (W) x 180 mm (D) x 50 mm (H) (7.09" x 7.09" x 1.97")
- 1.7kg

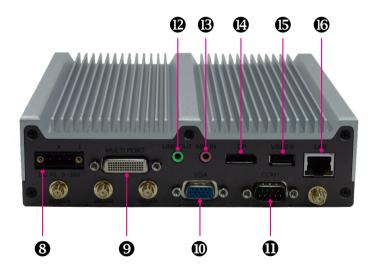
Construction

- Fanless
- Aluminum fin top cover and front/ rear panels
- SECC bottom enclosure

Environment

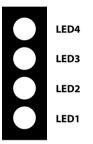
- Operating temperatures: -30°C to 70°C (w/ industrial SSD) with air flow
 -10°C to 50°C (w/ commercial HDD) with air flow
- Storage temperatures: -35°C to 85°C
- Relative humidity: 10% to 90% (non-condensing)
- Vibration (random): 1g@5~500 Hz (in operation, SSD)
- Vibration (SSD):
 - Operating: MIL-STD-810G, Method 514.6, Category 4, common carrier US highway truck vibration exposure
 - Storage: MIL-STD-810G, Method 514.6, Category 24, minimum integrity test
- Shock (SSD):
 - Operating: MIL-STD-810G, Method 516.6, Procedure I, functional shock=20g Non-Operating: MIL-STD-810G, Method 516.6, Procedure V, crash hazard shock test=75g


Certifications


- CE approval
- FCC Class B
- E13 Mark

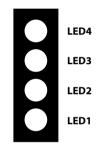
Connector Numbering

The following diagrams indicate the numbers of the connectors. Use these numbers to locate the connectors' respective pinout assignments on chapter 2 of the manual.



CHAPTER 2: EXTERNAL CONNECTORS PINOUT DESCRIPTION

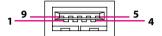
LED Indicators (PWR, Status, LAN & GPIO)


Connector Number: 1

LED	LED Behavior
LED1 (GPIO)	Off (Default)
LEDT (GFIO)	Green: On. Programmable by user.
LED2 (LAN)	Green: Link
LEDZ (LAIN)	Blinking: Active
LED3 (HEALTH)	Steady Green: System ready
LEDS (HEALIH)	Steady Red: System booting
LED4 (POWER)	Blue: Power good
LED4 (POVVEK)	Red: Power failure

LED Indicators (SSD, GPS, WLAN & WWAN)

Connector Number: 2


LED	LED Behavior
LED1 (WWAN)	Green: WWAN On
LED2 (WLAN)	Green: WLAN Connected. Off: Disconnected
LED3 (GPS)	Green: GPS power On
LED4 (SSD)	Green: Storage access

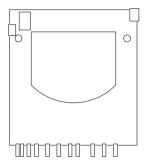
6

USB 3.0 Port

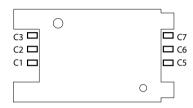
Connector Number: 3

Pin	Definition	Pin	Definition
1	5V	2	USB_N
3	USB_P	4	GND
5	USB3_RXN	6	USB3_RXP
7	GND	8	USB3_TXN
9	USB3_TXP		

Audio Jack 3.5mm



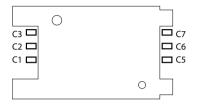
Pin	Definition	Pin	Definition
1	MIC-C1	2	GND
3	FRONT_RC1	4	FRONT_LC1
5	CON DET	G1	GND
G2	GND		


SD Card Connector

Connector Number: 5

Pin	Definition	Pin	Definition
1	D3	2	CMD
3	GND	4	VDD
5	CLK	6	GND
7	D0	8	D1
9	D2	WP	WP
Cd	CDZ	SC	GND
G	GND		

SIM1 Socket



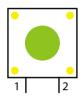
Pin	Definition	Pin	Definition
C1	UIM1_PWR2	C5	GND
C2	UIM1_RST2	C6	NC
C3	UIM1_CLK2	C7	UIM1_DAT2

SIM2 Socket

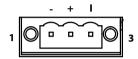
Connector Number: 5

Pin	Definition	Pin	Definition
C1	UIM2_PWR2	C5	GND
C2	UIM2_RST2	C6	NC
C3	UIM2_CLK2	C7	UIM2_DAT2

Event Button



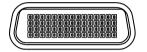
Pin	Definition
1	Front Event
2	GND


Reset Button

Connector Number: 7

Pin	Definition
1-2 Open	NORMAL
1-2 Short	RESET#

Power Input



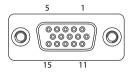
Pin	Definition
1	GND_IN
2	V_IN
3	IGNITION

Multiport Connector

Connector Number: 9

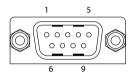
When connecting the multiport cable, please make sure the top side labeled "TOP" is facing upwards.

This side facing upwards


Pin	Definition	Pin	Definition
1	OUT_12V	16	CEN_JD
2	SP_DTR_3	17	CEN_C
3	SP_TXD_3	18	LFE_C
4	GPIO1	19	AGND
5	GPIO2	20	RS485
6	USB1_POWER	21	RS485_+
7	USB_2N_L	22	ISO_GND
8	USB_2P_L	23	ISO_GND
9	USB_GND	24	ISO_GND
10	RS422_TX-	25	ISO_GND
11	RS422_TX+	26	GPIO3
12	AGND	27	GPIO4
13	FRONT_L_C	28	SP_RXD_3
14	FRONT_R_C	29	SP_DCD_3
15	FRONT_JD	30	OUT_12V

Pin	Definition	Pin	Definition
31	GND	46	SIDE_JD
32	SP_CTS_3	47	SIDE_R_C
33	SP_DSR_3	48	SIDE_L_C
34	GPIO5	49	AGND
35	GPIO6	50	C1708_1_L
36	CAP2_A	51	C1708_1_H
37	CAN1_H	52	DIRECTION
38	CAN1_L	53	ODOMETER
39	CAN_M_L	54	1PPS
40	CAN_M_H	55	CAP2_B
41	REAR_PANIC	56	CAP1_A
42	AGND	57	CAP1_B
43	SURR_OUT_L_C	58	SP_RTS_3
44	SURR_OUT_R_C	59	SP_RI_3
45	SURR_JD	60	GND

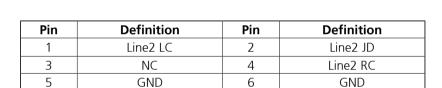
VGA Connector


Connector size: DB15, Female Connector Number: 10

Pin	Definition	Pin	Definition
1	Red	2	Green
3	Blue	4	NC
5	Gnd	6	Red_RTN
7	Green_RTN	8	Blue_RTN
9	+5V	10	GND
11	NC	12	I2C_Data
13	H SYNC	14	V SYNC
15	I2C_CLK		

RS232 Connector

Connector size: DB9, Male Connector Number: 11

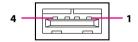

Pin	Definition	Pin	Definition
1	DCD	2	RXD
3	TXD	4	DTR
5	GND	6	DSR
7	RTS	8	CTS
9	RI		

Line-out

Connector Number: 12

Mic-in

Pin	Definition	Pin	Definition
1	Mic1 C	2	Mic2 JD
3	NC	4	Mic1 CL
5	GND	6	GND


DisplayPort

Connector Number: 14

Pin	Definition	Pin	Definition
1	DP0_DATA0_P	2	GND
3	DP0_DATA0_N	4	DP0_DATA1_P
5	GND	6	DP0_DATA1_N
7	DP0_DATA2_P	8	GND
9	DP0_DATA2_N	10	DP0_DATA3_P
11	GND	12	DP0_DATA3_N
13	CONFIG1	14	CONFIG2
15	DPC0_AUXP_C	16	GND
17	DPC0_AUXN_C	18	HPD
19	RETURN	20	DP0_PWR

USB 2.0 Port

Pin	Definition	Pin	Definition
1	5V	2	USB_N
3	USB_P	4	GND

LAN Connector

Pin	Definition	Pin	Definition
1	MDIOP	2	MDION
3	MDI1P	4	MDI2P
5	MDI2N	6	MDI1N
7	MDI3P	8	MDI3N
9	LED1-	10	LED1+
11	LED2-	12	LED2+

CHAPTER 3: JUMPERS AND SWITCHES

This chapter describes how to set the jumpers on the motherboard. Note that the following procedures are generic for all VTC 1010 series.

Before You Begin

- Ensure you have a stable, clean working environment. Dust and dirt can get into components and cause a malfunction. Use containers to keep small components separated.
- Adequate lighting and proper tools can prevent you from accidentally damaging the internal components. Most of the procedures that follow require only a few simple tools, including the following:
 - A Philips screwdriver
 - A flat-tipped screwdriver
 - A set of jewelers screwdrivers
 - A grounding strap
 - An anti-static pad
- Using your fingers can disconnect most of the connections. It is recommended that you do not use needle-nosed pliers to disconnect connections as these can damage the soft metal or plastic parts of the connectors.
- Before working on internal components, make sure that the power is off.
 Ground yourself before touching any internal components, by touching a metal object. Static electricity can damage many of the electronic components. Humid environment tend to have less static electricity than

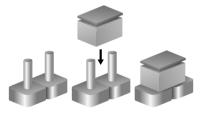
dry environments. A grounding strap is warranted whenever danger of static electricity exists.

Precautions

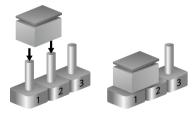
Computer components and electronic circuit boards can be damaged by discharges of static electricity. Working on the computers that are still connected to a power supply can be extremely dangerous.

Follow the guidelines below to avoid damage to your computer or yourself:

- Always disconnect the unit from the power outlet whenever you are working inside the case.
- If possible, wear a grounded wrist strap when you are working inside the computer case. Alternatively, discharge any static electricity by touching the bare metal chassis of the unit case, or the bare metal body of any other grounded appliance.
- Hold electronic circuit boards by the edges only. Do not touch the components on the board unless it is necessary to do so. Don't flex or stress the circuit board.
- Leave all components inside the static-proof packaging that they shipped with until they are ready for installation.
- Use correct screws and do not over tighten screws.



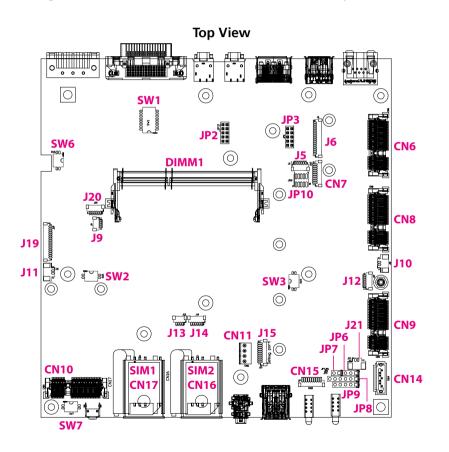
Jumper Settings

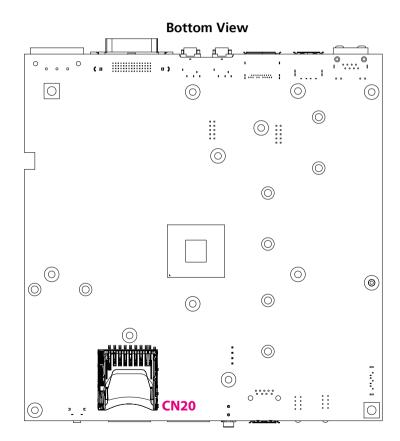

A jumper is the simplest kind of electric switch. It consists of two metal pins and a cap. When setting the jumpers, ensure that the jumper caps are placed on the correct pins. When the jumper cap is placed on both pins, the jumper is short. If you remove the jumper cap, or place the jumper cap on just one pin, the jumper is open.

Refer to the illustrations below for examples of what the 2-pin and 3-pin jumpers look like when they are short (on) and open (off).

Two-Pin Jumpers: Open (Left) and Short (Right)

Three-Pin Jumpers: Pins 1 and 2 are Short


17



VTC 1010 Connector Specification & Jumper Setting

VTC 1010 carrier board placement

The figure below is the carrier board used in the VTC 1010 system. It shows the locations of the jumpers and connectors.

VTC 1010 Jumper and Switch Settings

CMOS Clear Switch

Connector location: SW2

	On	Off
SW2.1	Clear CMOS	Normal
SW2.2	Clear ME	Normal

Default Settings:

SW2.1	Off
SW2.2	Off

Note: Once CMOS is cleared and the power connector is plugged in, VTC 1010 will power on and power off automatically in the first Power-On. After first Power-On, VTC 1010 will work normally.

Voltage Selector (For CN10 Connector)

Connector location: SW6

	3.3V	3.6V
SW6.1	Off	On
SW6.2	Off	On

Default Settings:

SW6.1	Off
SW6.2	Off

WWAN Module Selector (For Wake-Up & Voice on CN10)

Connector location: SW7

	WWAN HE910 Wake-Up & Voice	WWAN CM8000 Wake-Up & Voice	WWAN MC8090/8092
SW7.1	On	Off	Off
SW7.2	Off	On	On
Digital Voice*	HE910 (I2S)	Disabled (default)	MC8090(PCM)

RTC Battery Connector

Connector size: $1 \times 2 = 2$ -pin header (1.25mm)

Connector location: J11

Pin	Definition	
1	GND	
2	RTC_BAT	

Default Settings:

SW7.1	Off
SW7.2	On

^{*}Digital voice is selectable in BIOS.

External Thermal Sensor Module

Connector size: $1 \times 2 = 2$ -pin header

Connector location: JP7

Pin	Definition	
1	Sensor	
2	Sensor	

Debug 80 Port Connector

Connector size: $1 \times 10 = 10$ -pin header (1.0mm)

Connector location: J15

Pin	Definition	Pin	Definition
1	GND	2	PCIRST#
3	33M_CLK	4	LPC_FRAME#
5	LPC_AD3	6	LPC_AD2
7	LPC_AD1	8	LPC_AD0
9	VCC3	10	VCC3

VGA Connector

Connector size: $1 \times 16 = 16$ -pin header (1.0mm)

Connector location: J6

Pin	Definition	Pin	Definition
1	GND	2	VGA +5V
3	VGA_CLK	4	VGA_DATA
5	VGA_VS	6	VGA_HS
7	GND	8	GND
9	GND	10	VGA_GND
11	VGA_BLUE	12	VGA_GND
13	VGA_GREEN	14	VGA_GND
15	VGA_RED	16	M_DET

COM Port Connector

Connector size: $1 \times 10 = 10$ -pin header (1.0mm)

Connector location: CN7

Pin	Definition	Pin	Definition
1	GND	2	GND
3	CTS	4	DSR
5	DTR	6	RXD
7	RI	8	RTS
9	TXD	10	DCD

High Speed UART Connector

Connector size: $1 \times 10 = 10$ -pin header (1.0mm)

Connector location: CN15

Pin	Definition	Pin	Definition
1	GND	2	SIO_RTS_1
3	SIO_TXD_1	4	SIO_CTS_1
5	SIO_RXD_1	6	GND
7	SIO_CTS_0	8	SIO_RXD_0
9	SIO_RTS_0	10	SIO_TXD_0

OBDII Module Connector

Connector size: $2 \times 5 = 10$ -pin header (2.0mm)

Connector location: JP2 & JP3

JP2

Pin	Definition	Pin	Definition
1	CAN2.0B_H	2	CAN_1939_H
3	CAN2.0B_L	4	CAN_1939_L
5	GND	6	GND
7	ANALOG-Input1	8	ANALOG-Input2
9	ANALOG-Input3	10	ANALOG-GND

JP3

Pin	Definition	Pin	Definition
1	TXD	2	RXD
3	CAN_DI1	4	CAN_DO1
5	GND	6	GND
7	NC	8	NC
9	CAN_M_VCC5	10	NC

Capture Card Connector

(Connector for SC330 video capture card) Connector size: 1 x 6 = 6-pin header (1.0mm) Connector location: J5

- 1	
- 1	
L	

Pin	Definition	Pin	Definition
1	GND	2	CAP2_B
3	CAP2_A	4	CAP1_B
5	CAP1_A	6	GND

Capture Card Connector

(Connector for MPX-885 video capture card) Connector size: 2 x 5 = 10-pin header (1.27mm) Connector location: JP10

2	0	0	0	0	0	10
1		\bigcirc	0	\bigcirc	\circ	9

Pin	Definition	Pin	Definition
1	CAP1_A	2	CAP1_B
3	CAP2_A	4	CAP2_B
5	GND	6	NC
7	NC	8	NC
9	NC	10	NC

5V Output

Connector size: $1 \times 2 = 2$ -pin header (1.25mm)

Connector location: J21

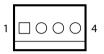
Pin	Definition
1	+
2	-

Event Button Connector

Connector size: $1 \times 2 = 2$ -pin header (1.25mm)

Connector location: J10

J10


Pin Definition		
1	GND	
2	FRONT_EVENT	

SATA HDD Connector


Connector size: CN11, 1 x 4 = 4-pin header (2.54mm) CN14, 1 x 7 = 7-pin header (1.27mm)

Connector location: CN11 & CN14

CN11

Pin	Definition	Pin	Definition
1	VCC12	2	GND
3	GND	4	VCC5

CN14

Pin	Definition	Pin	Definition
1	GND	2	SATA_TXP0
3	SATA_TXN0	4	GND
5	SATA_RXN0	6	SATA_RXP0
7	GND		

MCU Debug Port

Connector size: $1 \times 3 = 3$ -pin header (2.54mm)

Connector location: JP6

Pin	Definition			
1	TX6			
2	RX6			
3	GND			

GAL Download Port

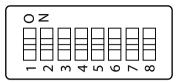
Connector size: $1 \times 6 = 6$ -pin header (2.54mm)

Connector location: JP8

Pin	Definition	Pin	Definition
1	VCC3	2	GND
3	TCK	4	TDO
5	TDI	6	TMS

MCU Download Port

Connector size: $1 \times 5 = 5$ -pin header (2.54mm)


Connector location: JP9

Pin	Definition	Pin	Definition
1	V3.3ALW	2	C2D
3	MRST	4	C2CK
5	GND		

GPIO Setting

Connector location: SW1

SW	On	Off
SW1.1	Pull up VCC5	Don't care
SW1.2	Pull up VCC5	Don't care
SW1.3	Pull up VCC5	Don't care
SW1.4	Pull up VCC5	Don't care
SW1.5	Pull up VCC5	Don't care
SW1.6	Pull up VCC5	Don't care
SW1.7	NC	NC
SW1.8	NC	NC

Default Settings:

SW1.1	On
SW1.2	On
SW1.3	On
SW1.4	On
SW1.5	On
SW1.6	On
SW1.7	On
SW1.8	On

Voltage Setup Selection

Connector location: SW3

PowerSW (SW3.1)	Off	Off	On
12V 24V (SW3.2) Off		On	Don't Care
	12V	24V	9~36V

Default Settings:

Power Range (9~36V)				
SW3.1 On				
SW3.2	Don't Care			

FAN Connector

Connector size: $1 \times 4 = 4$ -pin header

Connector location: J9

Pin	Definition	Pin	Definition
1	GND	2	Power
3	FAN_TACT	4	FAN_CTRL

VIOB-GPS-DR01

Connector size: $1 \times 4 = 4$ -pin header

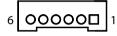
Connector location: J13

Pin	Definition	Pin	Definition
1	GND	2	IPPS
3	ODOMETER	4	DIRECTION

GPS Module Connector

Connector size: $1 \times 6 = 6$ -pin header

Connector location: J14



Pin	Definition	Pin	Definition
1	GPS_BAT	2	GPS_LED
3	GPS_CTX	4	GPS_CRX
5	GND	6	VCC3_GPS

MCU GPIO Connector

Connector size: $1 \times 6 = 6$ -pin header

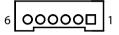
Connector location: J12

Pin	Definition	Pin	Definition
1	GND	2	MCU GPO2
3	MCU GPO1	4	MCU GPI2
5	MCU GPI1	6	GND

PCle Connector

Connector size: $1 \times 16 = 16$ -pin header

Connector location: J19

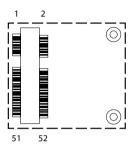


Pin	Definition	Pin	Definition
1	GND	2	PCIE_CLKN
3	PCIE_CLKP	4	GND
5	PCIE_RXN	6	PCIE_RXP
7	GND	8	PCIE_TXN
9	PCIE_TXP	10	GND
11	USBHUB_3N	12	USBHUB_3P
13	GND	14	PLTRST
15	EXP_Disable	16	GND

Expand Connector

Connector size: $1 \times 6 = 6$ -pin header

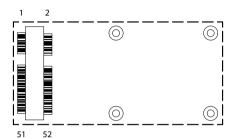
Connector location: J20



Pin	Definition	Pin	Definition
1	GND	2	GND
3	GND	4	12VSB
5	12VSB	6	12VSB

Mini-PCle (USB + PCle)

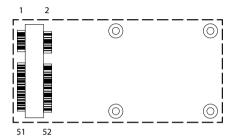
Connector location: CN6


Pin	Definition	Pin	Definition
1	WAKE#	2	+V3.3A_MINI1
3	NC	4	GND
5	NC	6	+V1.5S_MINI1
7	CLK_REQ#	8	NC
9	GND	10	NC
11	PCIE_CLK#	12	NC
13	PCIE_CLK	14	NC
15	GND	16	NC
17	NC	18	GND
19	NC	20	WLAN_DIS#
21	GND	22	RESET#
23	PCIE_RX_N	24	+V3.3A_MINI1
25	PCIE_RX_P	26	GND

			i e e e e e e e e e e e e e e e e e e e
Pin	Definition	Pin	Definition
27	GND	28	+V1.5S_MINI1
29	GND	30	SMBCLK
31	PCIE_TX_N	32	SMBDAT
33	PCIE_TX_P	34	GND
35	GND	36	USB-
37	GND	38	USB+
39	+V3.3A_MINI1	40	GND
41	+V3.3A_MINI1	42	NC
43	GND	44	WLAN_LED#
45	NC	46	NC
47	NC	48	+V1.5S_MINI1
49	NC	50	GND
51	BT_EN	52	+V3.3A_MINI1
	DI_EIN		1 1 2 : 5 / [11 11 11

Mini-PCle (SATA or (USB 2.0 + PCle))

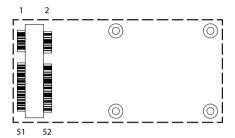
Connector location: CN9


Pin	Definition	Pin	Definition
1	WAKE#	2	+V3.3_MINI_3
3	NC	4	GND
5	NC	6	+V1.5S_MINI_3
7	CLKREQ	8	NC
9	GND	10	NC
11	REFCLK-	12	NC
13	REFCLK+	14	NC
15	GND	16	NC
17	NC	18	GND
19	NC	20	MINICARD3_DIS#
21	GND	22	WLAN_RESET#
23	SATA_RXP0_C	24	+V3.3_MINI_3
25	SATA_RXN0_C	26	GND

Pin	Definition	Pin	Definition
27	GND	28	+V1.5S_MINI_3
29	GND	30	SMBCLK
31	SATA_TXN0_C	32	SMBDAT
33	SATA_TXP0_C	34	GND
35	GND	36	USB_D-
37	GND	38	USB_D+
39	+V3.3_MINI_3	40	GND
41	+V3.3_MINI_3	42	WWAN_LED#
43	GND	44	NC
45	NC	46	NC
47	NC	48	+V1.5S_MINI_3
49	NC	50	GND
51	CTRL0	52	+V3.3_MINI_3

Mini-PCle (USB + PCle)

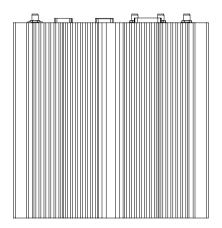
Connector location: CN8 SIM Socket: SIM 2 (CN16)

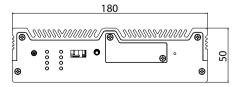

Pin	Definition	Pin	Definition
1	PCIE_WAKE#2	2	+V3.3A_MINI_2
3	NC	4	GND
5	NC	6	+V1.5S_MINI_2
7	CLK_REQ#2	8	UIM2_PWR2_MINI
9	GND	10	UIM2_DAT2_MINI
11	PCIE_CLK#2	12	UIM2_CLK2_MINI
13	PCIE_CLK2	14	UIM2_RST2_MINI
15	GND	16	NC
17	NC	18	GND
19	NC	20	PCIE2_DIS#
21	GND	22	PCIE2_RST#
23	PCIE_RX_N2	24	+V3.3A_MINI_2
25	PCIE_RX_P2	26	GND

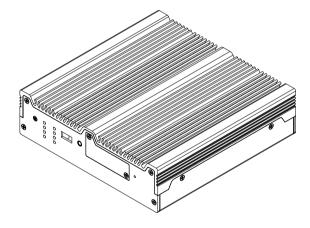
Pin	Definition	Pin	Definition
27	GND	28	+V1.5S_MINI_2
29	GND	30	SMBCLK
31	PCIE_TX_N2	32	SMBDAT
33	PCIE_TX_P2	34	GND
35	GND	36	USB-
37	GND	38	USB+
39	+V3.3A_MINI_2	40	GND
41	+V3.3A_MINI_2	42	NC
43	GND	44	PCIE2_LED
45	NC	46	NC
47	NC	48	+V1.5S_MINI_2
49	NC	50	GND
51	NC	52	+V3.3A_MINI_2

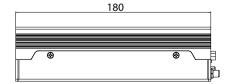
Mini-PCle (USB)

Connector location: CN10 SIM Socket: SIM1 (CN17)


Pin	Definition	Pin	Definition
1	MINI_MIC_P	2	+V3.3A_MINI_4
3	MINI_MIC_N	4	GND
5	MINI_SPK_PRR	6	NC
7	U_GND	8	UIM_PWR2
9	GND	10	UIM_DAT2
11	VCC_MSM26_DIG	12	UIM_CLK2
13	NC	14	UIM_RST2
15	GND	16	NC
17	NC	18	GND
19	NC	20	3.5G_DIS#
21	GND	22	3.5G_RST#
23	NC	24	+V3.3A_MINI_4
25	NC	26	GND


Pin	Definition	Pin	Definition
27	GND	28	NC
29	GND	30	NC
31	NC	32	SMS_RI_3.5G_R
33	UMTS_RESET#_R	34	GND
35	GND	36	USB-
37	GND	38	USB+
39	+V3.3A_MINI_4	40	GND
41	41 +V3.3A_MINI_4		3.5G_LED#_R
43	GND	44	NC
45	PCM_CLK	46	NC
47	PCM_RX	48	NC
49	PCM_TX	50	GND
51	PCM_SYNC	52	+V3.3A_MINI_4




CHAPTER 4: MECHANICAL DIMENSIONS

CHAPTER 5: SYSTEM SETUP

Removing the Chassis Cover

Prior to removing the chassis cover, make sure the unit's power is off and disconnected from the power sources to prevent electric shock or system damage.

Front View

Rear View

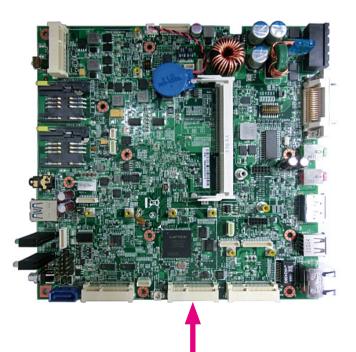
Installing the First WWAN Module

1. The Mini PCI Express slot (CN10) shown below is used to install a WWAN communication module such as GPRS, UMTS or HSDPA module. This WWAN module is paired with SIM socket 1.

2. Insert the module into the Mini PCI Express slot at a 45 degrees angle until the gold-plated connector on the edge of the module completely disappears inside the slot. Then fasten screws into the mounting holes to secure the module.

38

3. Attach one end of the RF cable onto the module.


4. Mount the other end of the cable to the antenna mounting hole (WWAN) located at the front panel of the chassis.

Installing the Second WWAN Module

1. The Mini PCI Express slot (CN8) shown below is used to install a WWAN communication module such as GPRS, UMTS or HSDPA module. This WWAN module is paired with SIM socket 2.

2. Insert the module into the Mini PCI Express slot at a 45 degrees angle until the gold-plated connector on the edge of the module completely disappears inside the slot. Then fasten screws into the mounting holes to secure the module.

3. Attach one end of the RF cable onto the module.


4. Mount the other end of the cable to the antenna mounting hole (WWAN) located at the front panel of the chassis.

Installing a Wireless LAN Module

1. The Mini PCI Express slot (CN6) shown below is used to install a wireless LAN module.

2. Insert the module into the Mini PCI Express slot at a 45 degrees angle until the gold-plated connector on the edge of the module completely disappears inside the slot. Then fasten screws into the mounting holes to secure the module, and attach one end of the RF cable onto the module.

3. Mount the other end of the cable to the antenna mounting hole (WLAN) located at the front panel of the chassis.

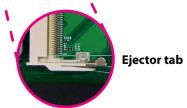
Installing a SATA SSD Drive

1. Place the SDD drive into the HDD mounting bracket and then tighten the four screws.

2. Fasten the HDD bracket within the chassis and connect the SATA data and power cable onto connectors CN14 and CN11.

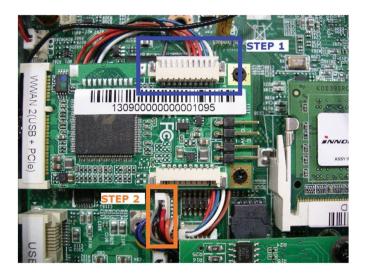
SATA data connector (CN14)

SATA power connector (CN11)


Mounting screws

Installing a SO-DIMM

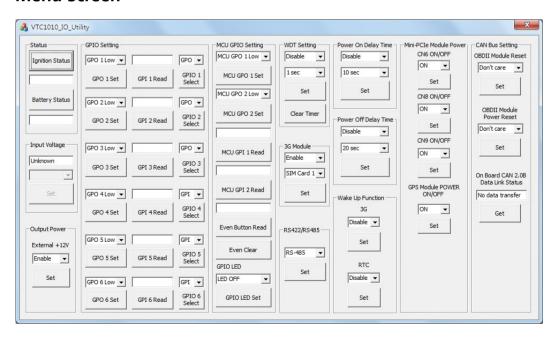
Push the ejector tabs which are at the ends of the socket outward. Then
insert the module into the socket at an approximately 30 degrees angle.
Apply firm even pressure to each end of the module until it slips down
into the socket. The contact fingers on the edge of the module will
almost completely disappear inside the socket.



Installing a Capture Card

Model: Yuan SC330 N4

- 1. Connect capture card cable onto the capture card.
- 2. Connect capture card cable to the J5 connector on VTC 1010.



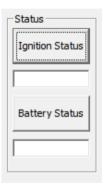
APPENDIX A: SOFTWARE DEMO UTILITY FOR I/O PORTS OF FUNCTION CONTROL

NEXCOM's software demo utility enables users to test and control different I/O port functions on the VTC 1010. This document shows how to use the utility.

There are also source code files of the utility in the CD. Users can refer to the source codes to develop their applications.

Menu Screen

1.1 Status


1.1.1 Ignition Status

Press the button of Ignition Status, the signal of ignition will be shown. ON Signal of ignition is high.

OFF Signal of ignition is low.

1.1.2 Battery Status

Press the button of Battery Status, the status of battery voltage will be shown. Low voltage Car battery is at low voltage. OFF Car battery is not at low voltage.

1.1.3 Input Voltage

Shows the setting of input voltage on SW3.

1.1.4 Output Power

External +12V Enables or disables the output of 12VDC.

1.2 GPIO Setting

1.2.1 GPIO Select

Defines GPIO port as GPO or GPI.

1.2.2 GPO Set

Selects the GPO ports and makes the output low or high.

1.2.3 GPI Read

Reads the status of GPI.

1.3 MCU GPIO Setting

1.3.1 MCU GPO Set

Selects MCU GPO ports and makes the output low or high.

1.3.2 MCU GPI Status

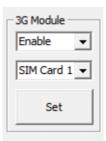
Shows the status of the MCU GPI.

1.3.3 Even Button Read

Shows the status of the Event Button.

1.3.4 **GPIO LED**

Sets the On/Off of the GPIO LED on front panel.


1.4 WDT Setting

Enables or disables the WDT function. There are 9 selections of time. The timer of WDT can also be cleared by button.

1.5 3G Module

Enables or disables the WWAN function. SIM card 1 or SIM card 2 can also be selected for the WWAN module.

1.6 RS-422/RS-485

Selects RS-422 or RS-485

1.7 Power On Delay Time

Enables or disables the power on delay time function. There are 8 selections of delay time.

1.8 Power Off Delay Time

Enables or disables the power off delay time function. There are 8 selections of delay time.

1.9 Wake Up Function

1.9.1 3G

Enables or disables the wake up function for the WWAN module on mini-PCle socket (CN10).

1.9.2 RTC

Enables or disables the RTC wake up function. The timer setting of RTC is located in BIOS setting.

2.0 Mini-PCle Module Power On/Off

2.0.1 CN6 On/Off

Power on or off CN6.

2.0.2 CN8 On/Off

Power on or off CN8.

2.0.3 CN9 On/Off

Power on or off CN9.

2.0.4 GPS Module Power On/Off

Power on or off the GPS module.

2.1 CAN Bus Setting

2.1.1 OBDII Module Reset

Reset OBDII module.

2.1.2 OBDII Module Power Reset

Reset the power of OBDII module.

2.1.3 On Board CAN2.0B Data Link Status

Reads the connection status of CAN2.0B

APPENDIX B: GPS FEATURE

uBlox-NEO M8 Overview

The NEO-M8 series of standalone concurrent GNSS modules is built on the exceptional performance of the u-blox M8 GNSS (GPS, GLONASS, Galileo, BeiDou, QZSS and SBAS) engine in the industry proven NEO form factor.

The NEO-M8 series provides high sensitivity and minimal acquisition times while maintaining low system power. The NEO-M8M is optimized for cost sensitive applications, while NEO-M8N and NEO-M8Q provide best performance and easier RF integration. The NEO form factor allows easy migration from previous NEO generations. Sophisticated RF-architecture and interference suppression ensure maximum performance even in GNSS-hostile environments.

The NEO-M8 combines a high level of robustness and integration capability with flexible connectivity options. The future-proof NEO-M8N includes an internal Flash that allows simple firmware upgrades for supporting additional GNSS systems. This makes NEO-M8 perfectly suited to industrial and automotive applications.

The DDC (I2C compliant) interface provides connectivity and enables synergies with most u-blox cellular modules. For RF optimization the NEO-M8N/Q features an additional front-end LNA for easier antenna integration and a front-end SAW filter for increased jamming immunity.

u-blox M8 modules use GNSS chips qualified according to AEC-Q100, are manufactured in ISO/TS 16949 certified sites, and fully tested on a system level. Qualification tests are performed as stipulated in the ISO16750 standard: "Road vehicles – Environmental conditions and testing for electrical and electronic equipment".

Technical Specifications

COM Port for GPS: COM 4

Baud Rate: 9600

F	Δ2	4.		٠Δ٥
г	ea	u	uг	62

. catares				
Receiver type	GPS/QZSS L1 C/A, (SBAS L1 C/A: WAA	72-channel u-blox M8 engine GPS/QZSS L1 C/A, GLONASS L10F, BeiDou B1 SBAS L1 C/A: WAAS, EGNOS, MSAS Galileo-ready E1B/C (NEO-M8N)		
Nav. update rate ¹	Single GNSS: up to Concurrent GNSS:			
Position accuracy	2.0 m CEP			
		NEO-M8N/Q	NEO-M8M	
Acquisition	Cold starts: Aided starts: Reacquisition:	26 s 2 s 1 s	27 s 4 s 1 s	
Sensitivity	Tracking & Nav: Cold starts: Hot starts:	–167 dBm –148 dBm –156 dBm	−147 dBm	
Assistance	AssistNow GNSS Online AssistNow GNSS Offline (up to 35 days) AssistNow Autonomous (up to 6 days) OMA SUPL & 3GPP compliant			
Oscillator	TCXO (NEO-M8N/Q), Crystal (NEO-M8M)			
RTC crystal	Built-in			
Noise figure	On-chip LNA (NEO-	M8M). Extra LNA	for	

lowest noise figure (NEO-M8N/Q)

53

Features cont.

Anti jamming Active CW detection and removal. Extra

onboard SAW band pass filter (NEO-M8N/Q)

Memory ROM (NEO-M8M/Q) or Flash (NEO-M8N)

Supported antennas Active and passive **Odometer** Travelled distance

Data-logger For position, velocity, and time (NEO-M8N)

Electrical data

Supply voltage 1.65 V to 3.6 V (NEO-M8M)

2.7 V to 3.6 V (NEO-M8N/Q)

Power consumption² 23 mA @ 3.0 V (continuous)

5 mA @ 3.0 V Power Save Mode

(1 Hz, GPS only)

Backup Supply 1.4 to 3.6 V

Interfaces

Serial interfaces 1 UART

1 USBV2.0 full speed 12 Mbit/s

1 SPI (optional)

1 DDC (I²C compliant)

Digital I/O Configurable timepulse

1 EXTINT input for Wakeup

Timepulse Configurable 0.25 Hz to 10 MHz

Protocols NMEA, UBX binary, RTCM

Package

24 pin LCC (Leadless Chip Carrier): 12.2 x 16.0 x 2.4 mm, 1.6 g

Pinout

13	GND	GND	12	
14	ANT_ON/	Reserved RF_IN	11	
15	Reserved	GND	10	
16	Reserved	VCC_RF	9	
17	Reserved	RESET_N	8	
NEO-M8				
18	SDA	Top View VDD_USB	7	
19	SCL	USB_DP	6	
20	TxD	USB_DM	5	
21	RxD	EXTINT	4	
22	V_BCKP	TIMEPULSE	3	
23	VCC	D_SEL	2	
24	GND	Reserved	1	

Environmental data, quality & reliability

Operating temp. -40° C to 85° C

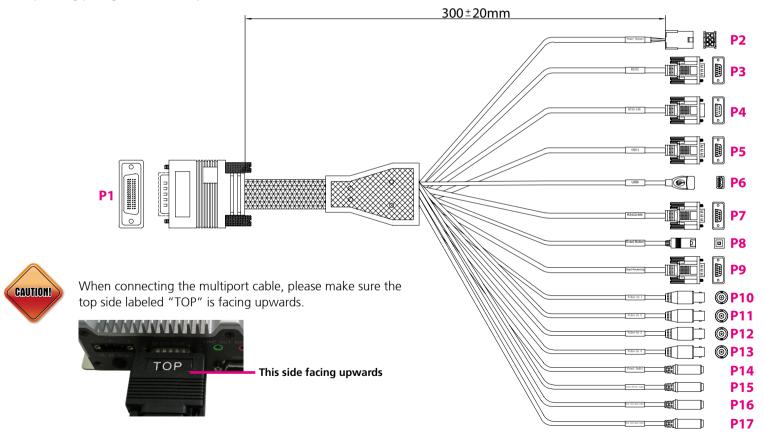
Storage temp. -40° C to 85° C (NEO-M8N/Q) -40° C to 105° C (NEO-M8M)

RoHS compliant (lead-free)

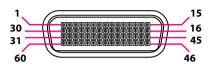
Qualification according to ISO 16750

Manufactured and fully tested in ISO/TS 16949 certified production sites

Uses u-blox M8 chips qualified according to AEC-Q100


¹ For NEO-M8M/Q

² NFO-M8M

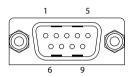

APPENDIX C: PIN DEFINITION FOR THE MULTIPORT CABLE

The multiport consists of a 60-pin connector (P1) and multiple output connectors. The tables in this appendix list the pin signals of the P1 connector and its corresponding pin signals to the output connectors.

P1 Connector Pinout

P2 to P17 Connector Pinouts Power Output Connector

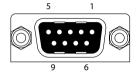
Connector type: 2x3 6-pin header


Connector location: P2

P1 Pin	P2 Pin	Definition
1	2	OUT_12V
30	2	OUT_12V
31	5	GND
60	5	GND
	1, 3, 4, 6	NC

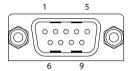
RS232 Connector

Connector type: DB9, Male Connector location: P3



P1 Pin	P3 Pin	Definition
29	1	SP_DCD_3
28	2	SP_RXD_3
3	3	SP_TXD_3
2	4	SP_DTR_3
22	5	ISO_GND
33	6	SP_DSR_3
58	7	SP_RTS_3
32	8	SP_CTS_3
59	9	SP_RI_3

GPIO + CAN Bus 2.0B Connector


Connector type: DB9, Female Connector location: P4

P1 Pin	P4 Pin	Definition
4	1	GPIO1
5	2	GPIO2
26	3	GPIO3
27	4	GPIO4
23	5	ISO_GND
34	6	GPIO5
37	7	CAN1_H
38	8	CAN1_L
35	9	GPIO6

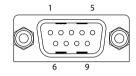
OBDII Connector

Connector type: DB9, Male Connector location: P5

P1 Pin	P5 Pin	Definition
39	3	CAN_M_L
50	4	C1708_1_L
24	5	ISO_GND
40	8	CAN_M_H
51	9	C1708_1_H
	1, 2, 6, 7	NC

USB Connector

Connector type: USB Female, Type A


Connector location: P6

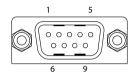
P1 Pin	P6 Pin	Definition
6	1	USB1_POWER (+5V)
7	2	USB_2N_L (-)
8	3	USB_2P_L (+)
9	4	USB_GND (GND)

RS422/485 Connector

Connector type: DB9, Male Connector location: P7

P1 Pin	P7 Pin	Definition
21	1	RS485_+
20	2	RS485
11	3	RS422_TX+
10	4	RS422_TX-
25	5	ISO_GND
	6, 7, 8, 9	NC

Reset Button


Connector location: P8

P1 Pin	P8 Pin	Definition
41	1	Rear Panic (+)
22	2	ISO_GND (-)

Odometer Connector

Connector type: DB9, Male Connector location: P9

P1 Pin	P9 Pin	Definition
52	1	DIRECTION
53	3	ODOMETER
54	5	1PPS
23	6	ISO_GND
	2, 4, 7, 8, 9	NC

A/V1 Jack

Connector type: BNC Connector location: P10

P1 Pin	P10 Pin	Definition
56	1	CAP1_A (+)
22	2	ISO_GND (-)

A/V2 Jack

Connector type: BNC Connector location: P11

P1 Pin	P11 Pin	Definition
57	1	CAP1_B (+)
23	2	ISO_GND (-)

A/V3 Jack

Connector type: RCA Connector location: P12

P1 Pin	P12 Pin	Definition
36	1	CAP2_A (+)
24	2	ISO GND (-)

A/V4 Jack

Connector type: RCA Connector location: P13

P1 Pin	P13 Pin	Definition
55	1	CAP2_B (+)
25	2	ISO_GND (-)

Front Audio

Connector type: TRS 3.5mm Connector location: P14

P1 Pin	P14 Pin	Definition
12	1	AGND
13	2	FRONT_L_C
15	4	Jack Detection
14	5	FRONT_R_C

Center Audio

Connector type: TRS 3.5mm Connector location: P15

P1 Pin	P15 Pin	Definition
19	1	AGND
17	2	CEN_C
16	4	Jack Detection
18	5	LFE_C

62

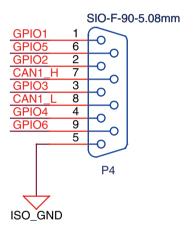
Surround Audio

Connector type: TRS 3.5mm Connector location: P16

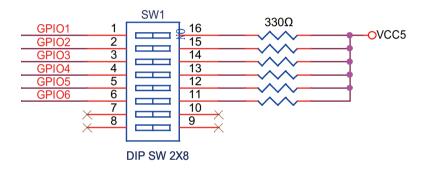
P1 Pin	P16 Pin	Definition
42	1	AGND
43	2	SURR_OUT_L_C
45	4	Jack Detection
44	5	SURR_OUT_R_C

Rear Audio

Connector type: TRS 3.5mm Connector location: P17



P1 Pin	P17 Pin	Definition
49	1	AGND
48	2	SIDE_L_C
46	4	Jack Detection
47	5	SIDE_R_C


APPENDIX D: SIGNAL CONNECTION OF DI/DO

GPIO Pinout Description

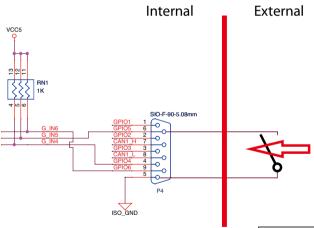
Note: By default, pin 1, 2 and 3 are configured for GPO, while pin 4, 5 and 6 are configured for GPI.

SW1 Setting

GPIO (SW1)		
On	Pull up VCC5	
Off	Don't Care	

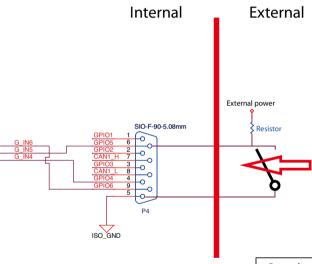
Default Settings:

GPIO (SW1)		
SW1.1~SW1.6	Pull up VCC5	


Digital Input

P4 connector for GPI signal (digital signal input) The P4 has 3 digital input channels by default.

Wet Contact (default)


The GPI signals have a pull up resistor to 5V internally.

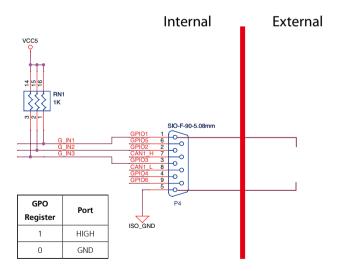
The figure below shows how to connect an external output source to one of the input channel.

Dry Contact:

External Switch	Port	GPI Register	
ON (Short)	GND	0	
OFF (Open)	HIGH	1	

Digital Output

P4 connector for GPO signal (digital signal output)

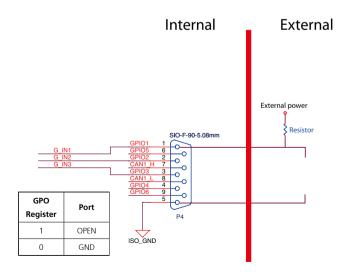

The P4 has 3 digital output channels by default. The signal connection of P4 support two connected methods for output signal type.

The output signal has two states, one is low level (driven to 0V from GPO signal) other is open (high voltage is provided from external device).

Wet Contact (default)

The SW1 needs to switch to "ON" state. The GPO signal will have a pull up resistor to 5V internally when you switch "SW1" to "ON" state. The output signal has two states, one is low level (driven to 0V from GPO signal) other is high level (driven to 5V from GPO signal).

The figure below shows how to connect an external input source to one of the output channel.



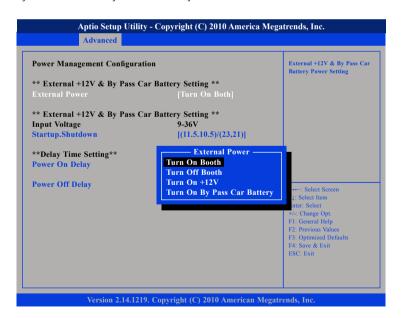
Dry Contact

Each channel can accept 3~18Vdc voltage. And it is able to drive 150mA current for low level.

The SW1 needs to switch to "OFF" state. The GPO signal will no have a pull up resistor internally when you switch "SW1" to "OFF" state.

The figure below shows how to connect an external input source to one of the output channel.

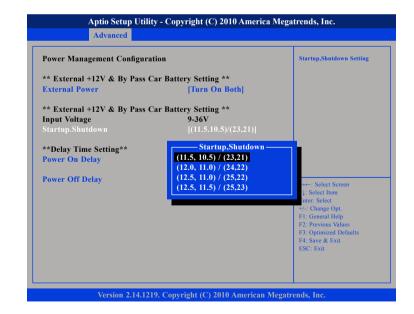
66



APPENDIX E: VEHICLE POWER MANAGEMENT SETUP

External Power Output Setting

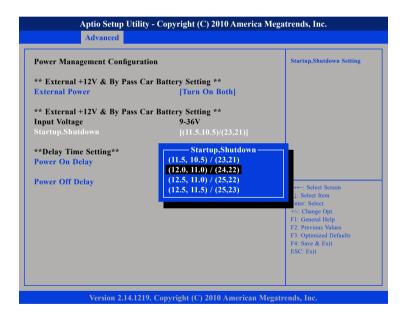
VTC 1010 has four modes for external power output setting.


- 1. External +12V and By Pass Car Battery Turn On Simultaneously
- 2. External +12V and By Pass Car Battery Turn Off Simultaneously
- 3. External +12V Turn On Only
- 4. By Pass Car Battery Turn On Only

Startup and Shutdown Voltage Setting

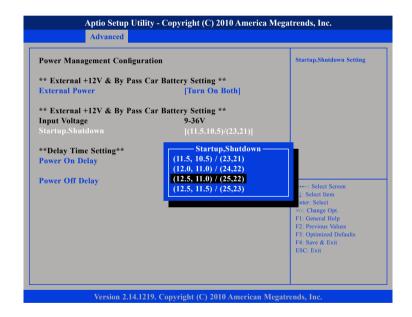
Set the startup voltage to 11.5V or 23V and the shutdown voltage to 10.5V or 21V If the input voltage is 12V: the startup voltage to 11.5V and the shutdown voltage to 10.5V.

If the input voltage is 24V: the startup voltage to 23V and the shutdown voltage to 21V.



Set the startup voltage to 12.0V or 24V and the shutdown voltage to 11.0V or 22V

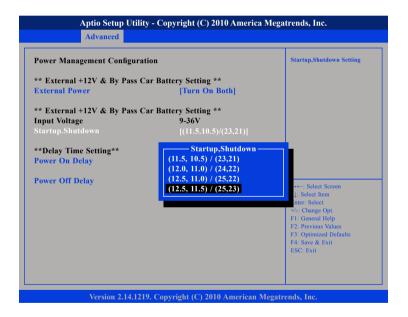
If the input voltage is 12V: the startup voltage to 12V and the shutdown voltage to 11V.


If the input voltage is 24V: the startup voltage to 24V and the shutdown voltage to 22V.

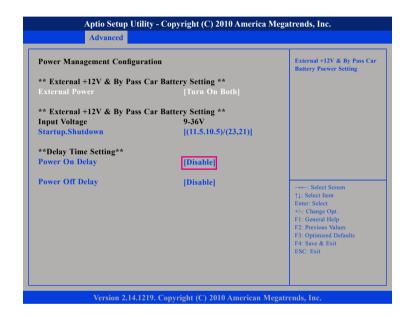
Set the startup voltage to 12.5V or 25V and the shutdown voltage to 11.0V or 22V

If the input voltage is 12V: the startup voltage to 12.5V and the shutdown voltage to 11V.

If the input voltage is 24V: the startup voltage to 25V and the shutdown voltage to 22V.

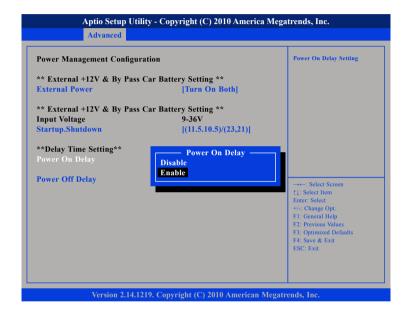


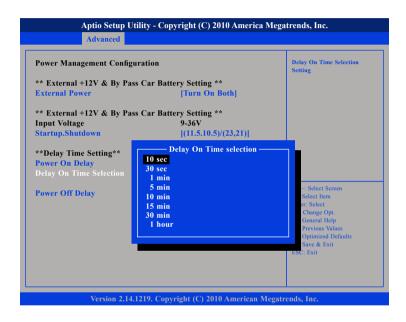
Set the startup voltage to 12.5V or 25V and the shutdown voltage to 11.0V or 22V


If the input voltage is 12V: the startup voltage to 12.5V and the shutdown voltage to 11.5V.

If the input voltage is 24V: the startup voltage to 25V and the shutdown voltage to 23V.

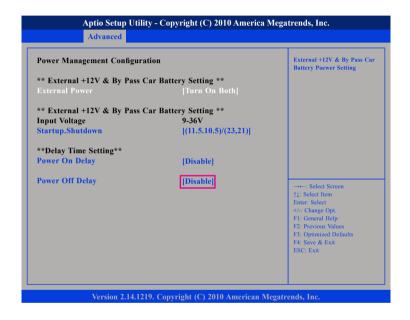
Power-on Delay Setting


Disable Power-on Delay



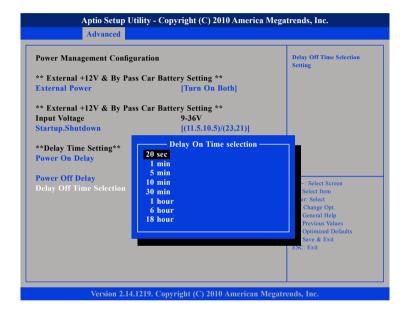
Enable Power-on Delay

Delay time can be set at 10sec/30sec/1min./5min./10min./15min./30min./1hour.



Power-off Delay Setting

Disable Power-off Delay



Enable Power-off Delay

Delay time can be set at 20sec/1min./5min./10min./30min./1hour/6hour/18hour.

APPENDIX F: POWER CONSUMPTION

OS: Windows 8

Burn-in Software: Version 6.0 **Device:** 2G DDR3L and SSD

Idle Mode	Burn-in Mode	S3	S4	S 5
494mA/12V	0.92A/12V	88mA/12V	6mA/12V	6mA/12V
6W	11W	1.1W	0.1W	0.1W